

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Effect of Alkyl Chain Length on the Extraction of Copper(II) Complexes with 1-Alkyl-2-Methylimidazoles

Elzbieta Radzyminska-Lenarcik^a

^a Department of Inorganic Chemistry, University of Technology and Life Sciences, Bydgoszcz, Poland

To cite this Article Radzyminska-Lenarcik, Elzbieta(2007) 'Effect of Alkyl Chain Length on the Extraction of Copper(II) Complexes with 1-Alkyl-2-Methylimidazoles', *Separation Science and Technology*, 42: 12, 2661 — 2675

To link to this Article: DOI: 10.1080/01496390701515003

URL: <http://dx.doi.org/10.1080/01496390701515003>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Effect of Alkyl Chain Length on the Extraction of Copper(II) Complexes with 1-Alkyl-2-Methylimidazoles

Elzbieta Radzyminska-Lenarcik

Department of Inorganic Chemistry, University of Technology and Life Sciences, Bydgoszcz, Poland

Abstract: By using the liquid-liquid partition method, the formation of Cu(II) complexes with 1-alkyl-2-methylimidazoles (where alkyl = isobutyl, pentyl, isopentyl, hexyl, octyl, decyl, and dodecyl) has been studied at 25°C and at fixed ionic strength of the aqueous phase ($I = 0.5$; $(HL)NO_3$, KNO_3). The complexes were extracted with 2-ethyl-1-hexanol, dichloromethane, trichloromethane and, in one system only, toluene. Stability constants of the complexes in aqueous solution as well as partition constants of the extractable species were determined. It has been shown that the stability constants are invariable and do not depend on the 1-alkyl chain length. The constants were smaller than those of the previously studied Cu(II) – 1-alkylimidazole complexes owing to the steric effect of the methyl group at position 2. The partition constants of the complexes increased with increasing alkyl chain length. Branched 1-alkyl substituents (isobutyl, isopentyl) suppressed both stability constants and the partition constants of the complexes.

Keywords: Solvent extraction, Cu(II) complexes, 1-alkyl-2-methylimidazole, stability constants, partition constants

INTRODUCTION

Imidazole has been known to form complexes with transition metal ions of a stability matching that of ammonia complexes, although it is a much weaker

Received 29 January 2007, Accepted 30 April 2007

Address correspondence to Elzbieta Radzyminska-Lenarcik, Department of Inorganic Chemistry, Str. Seminaryjna 3, Bydgoszcz 85–326, Poland. E-mail: elaradz@utp.edu.pl

base than ammonia (1). Alkyl substituents at position α to the pyridinic nitrogen atom enhance the basicity of imidazole, but hinder the formation of the alkylimidazole complexes with metal ions. The steric effect has been reported for the methyl (2–4), ethyl (5), n-propyl and isopropyl (6), and n-butyl and isobutyl (7) substituents. This effect has been found to depress the stability constants, mostly of octahedral species, e.g. those of Ni(II). It is also likely to perturb the structure of a coordination polyhedron. With Co(II), Zn(II), and Cd(II) ions, the steric hindrance due to the 2-alkyl substituents is favorable for the formation of tetrahedral species that are far less sensitive to their effects (2–7). This phenomenon is of practical importance because the tetrahedral complexes, being less hydrated, are more readily extractable from aqueous solutions than are the octahedral ones (8–13). This is utilized, for instance, for the separation of Co(II) and Ni(II).

Our experience has shown that the Cu(II) ion is less sensitive to steric hindrance in reactions with 2-alkylimidazoles than are the Ni(II), Cd(II), and Zn(II) ions (7). The magnitude of the steric effect can be controlled through substitution at position 2 of either small (CH_3) or bulky alkyl groups. Elongation of the 1-alkyl substituent increases the hydrophobicity mainly of a metal complex, thus enhancing its extractability with an organic solvent (11–15). Previously we have studied (11) the influence of the steric effect and the alkyl chain length on the extraction efficiency of the Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes with first four members of the homologous series of 1-alkyl-2-methylimidazoles using benzyl alcohol as the organic solvent. It was found that owing to the steric effect of the 2-methyl group, the Cu(II) complexes were extracted at a lowest pH (5.02–5.33) as compared to those of the complexes of the remaining four ions.

Recently the influence of alkyl chain length and steric effect on the extraction of Zn(II) complexes with 1-alkyl-2-methylimidazole was studied (16).

The purpose of this contribution was to identify the phenomena and parameters affecting the extraction of the Cu(II) complexes with sparingly soluble 1-alkyl-2-methylimidazoles. A total number of seven compounds belonging to this family was investigated. Their molecules contain an increasing length of 1-alkyl group ranging from butyl to dodecyl. 2-Ethyl-1-hexanol, dichloromethane, trichloromethane, and toluene (the last-named for the extraction of 1-dodecyl-2-methylimidazole complexes only) were used as solvents.

EXPERIMENTAL

Reagents

The 1-alkyl-2-methylimidazoles used in this work were synthesized by A. Skrzypczak, Technical University, Poznan, Poland, according to the literature method (17). The remaining particulars relating to structure elucidation

and checking the purity of the compounds are given in the preceding article (18).

Potassium and copper(II) nitrates, both of analytical reagent grade (POCh, Poland) were crystallized twice from double-distilled water. Concentration of the Cu(II) salt was determined by titration with EDTA and that of potassium nitrate gravimetrically as sulfate. Nitric acid (analytical reagent, POCh) was standardized against anhydrous sodium carbonate and sodium tetraborate decahydrate.

Trichloromethane (POCh, Poland), dichloromethane (POCh, Poland), toluene (POCh, Poland) and 2-ethyl-1-hexanol (Aldrich), all the analytical reagents, were used as received.

The pH-meter was calibrated using commercial buffer solutions (Radiometer) of pH 4.01 ± 0.01 and 7.00 ± 0.01 . The pH was also checked against hydrochloric acid according to IUPAC recommendations (19).

Equipment

Potentiometric measurements were carried out on a computer-aided multi-functional pH-meter (PHM 250, Radiometer) equipped with a glass-calomel combination electrode C 2401-8 (Radiometer).

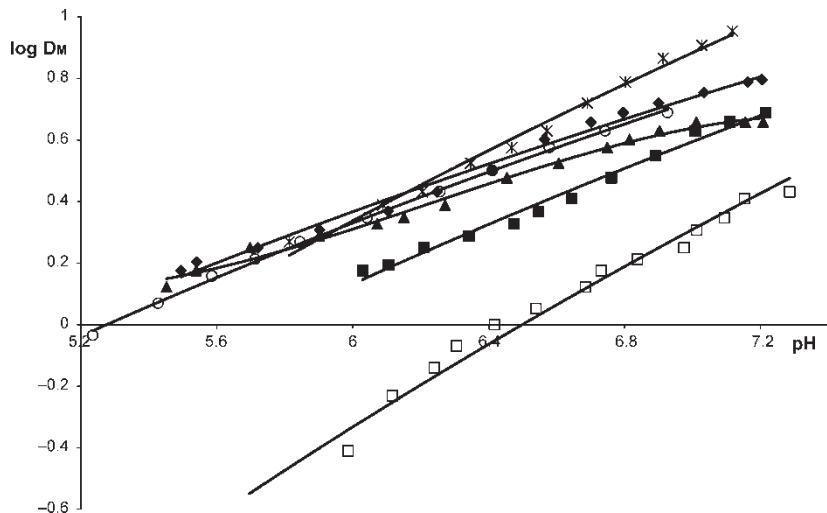
The atomic absorption spectrophotometer-BUCK Scientific 210 VGP instrument with a hollow cathode lamp Cu 324.7 was used for the determination of Cu(II) concentration. A Hewlett Packard 8542A Diode Array Spectrophotometer was used for recording absorption spectra of the Cu(II) complexes in the organic phase over the visible region.

Extraction Procedure

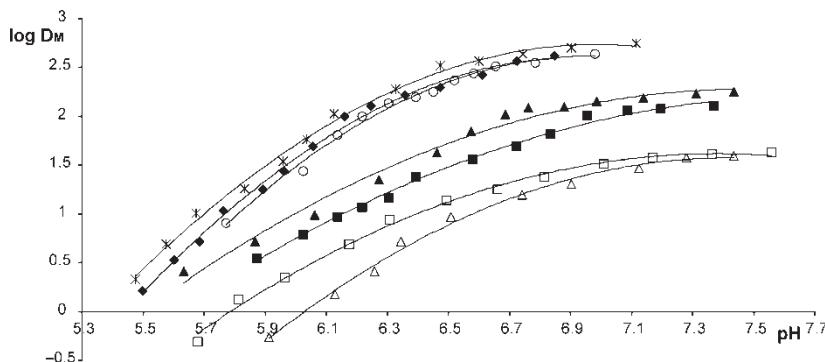
The measurements were run at 25°C and at fixed ionic strength (0.5) maintained in the aqueous phase with $\text{KNO}_3 + \text{HNO}_3$. Before extraction, concentrations of the metal ions and nitric acid in the aqueous phase were constant (0.01 M and 0.15 M, respectively) and the ligand concentrations in the organic phase were varied from 0.01 to 0.25 M. Six cm^3 of the aqueous phase were placed in a graduated test tube and an equal volume of an 1-alkyl-2-methylimidazole solution was added in the organic solvent. The test tubes were then shaken for 30 min. The equilibrium was established after a few minutes; however, no longer than 30 min. After that the difference in the phase volume was read out, the phases were separated, and the pH of the aqueous phase was measured. Any change in the phase volumes has been taken into account regarding the calculation of the quantities of copper(II) that had passed to the organic phase. The Cu(II) concentration was determined by titration with a standardized EDTA solution and by atomic absorption

spectrophotometry. Visible absorption spectra of the organic layer were subsequently recorded.

RESULTS AND DISCUSSION


The distribution ratio (D_M) of copper(II) in the systems studied was calculated on the basis of the Cu(II) concentrations in the aqueous phase before and after attaining equilibrium from the following equation:

$$D_M = \frac{C_{\text{Cu(II)(org)}}}{C_{\text{Cu(II)(aq)}}} = \frac{C_M^0 - C_M}{C_M} \quad (1)$$


where: C_M^0 C_M denote analytical Cu(II) concentrations in the aqueous phase before and after attaining partition equilibrium, respectively.

The magnitude of variable D_M depends on the alkylimidazole concentration in both phases, and consequently on the pH.

The distribution ratio of the Cu(II) complexes of 1-alkyl-2-methylimidazoles in water/organic solvent systems for three solvents (2-ethyl-1-hexanol,

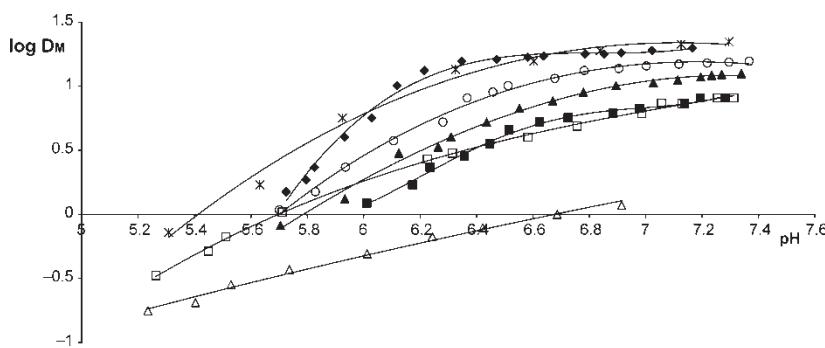


Figure 1. Influence of the alkyl chain length on the extraction of Cu(II) complexes with 1-alkyl-2-methylimidazoles into 2-ethyl-1-hexanol at 25°C and constant ionic strength of aqueous solution $I = 0.5$ K(HNO₃). Analytical concentration of 1-alkyl-2-methylimidazoles in the organic phase varied from 0.01 mol/L to 0.25 mol/L (corresponding to the lowest and the highest pH, respectively). ■ – 1-pentyl-2-methylimidazole; □ – 1-isopentyl-2-methylimidazole; ▲ – 1-hexyl-2-methylimidazole; ○ – 1-octyl-2-methylimidazole; ◆ – 1-decyl-2-methylimidazole; * – 1-dodecyl-2-methylimidazole.

Figure 2. Influence of the alkyl chain length on the extraction of Cu(II) complexes with 1-alkyl-2-methylimidazoles into dichloromethane at 25°C and constant ionic strength of aqueous solution I = 0.5 K(HNO₃). Analytical concentration of 1-alkyl-2-methylimidazoles, the same as given in Fig. 1. △ – 1-isobutyl-2-methylimidazole; ■ – 1-pentyl-2-methylimidazole; □ – 1-isopentyl-2-methylimidazole; ▲ – 1-hexyl-2-methylimidazole; ○ – 1-octyl-2-methylimidazole; ◆ – 1-decyl-2-methylimidazole; * – 1-dodecyl-2-methylimidazole.

dichloromethane, and trichloromethane), as a function of $\log D_M$ vs. pH of the aqueous phase, are summarized in Figs. 1–3. The curves were drawn using the least-squares fits. The magnitude of $\log D_M$ is relatively small for the first solvent (a –0.4 to 1.0 range), larger for trichloromethane (–0.2 to 1.4), and the largest for dichloromethane (–0.3 to 2.7).

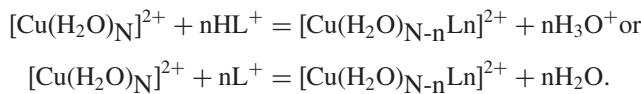


Figure 3. Influence of the alkyl chain length on the extraction of Cu(II) complexes with 1-alkyl-2-methylimidazoles into trichloromethane at 25°C and constant ionic strength of aqueous solution I = 0.5 K(HNO₃). Analytical concentration of 1-alkyl-2-methylimidazoles, the same as given in Fig. 1. △ – 1-isobutyl-2-methylimidazole; ■ – 1-pentyl-2-methylimidazole; □ – 1-isopentyl-2-methylimidazole; ▲ – 1-hexyl-2-methylimidazole; ○ – 1-octyl-2-methylimidazole; ◆ – 1-decyl-2-methylimidazole; * – 1-dodecyl-2-methylimidazole.

For each solvent, the extraction curves ($\log D_M$ vs. pH) are distinctly displaced towards lower pH's with increasing 1-alkyl chain length. This is useful from the practical point of view, because by using alkylimidazoles with long alkyls Cu(II) can be extracted at low pH's (and consequently low concentrations of the heterocyclic base in both phases). A similar regularity has previously been reported for the extraction of Co(II), Ni(II), Zn(II), and Cu(II) with 1-alkylimidazoles [12,13,15,20] and 1-alkyl-4(5)-methylimidazoles (14).

An interesting finding has been noticed with 1-pentyl-2-methylimidazole and its 1-isopentyl isomer. Namely, replacing the 1-pentyl compound by 1-isopentyl resulted in depressing the D_M value and displacement of the extraction curve towards higher pH values. A similar behavior was noticed with 1-isobutyl-2-methylimidazole.

The formation of the complexes might occur described by the following equations:

The remaining water particles in coordination sphere of the copper(II) can be replaced by anions NO_3^- , and also the solvent molecules (S). If the complex containing e.g. c molecules of ligand ($0 < c < N$), the ML_c complex is hydrophobic enough to pass into the organic phase. Of course, the complex $c+1$ will have considerably greater chances to pass.

The extraction process of the complexes is described by the equations 2–4:

$$D_M = \frac{[\text{ML}_c]_{\text{org}} + [\text{ML}_{c+1}]_{\text{org}} + \dots + [\text{ML}_N]_{\text{org}}}{[\text{M}]_{\text{aq}} + [\text{ML}]_{\text{aq}} + [\text{ML}_2]_{\text{aq}} + \dots + [\text{ML}_N]_{\text{aq}}} \quad (2)$$

$$[\text{ML}_c]_{\text{org}} = P_c [\text{ML}_c]_{\text{aq}} = P_c \beta_c [\text{L}]^c \quad (3)$$

where: β_n and β_c are cumulative stability constants of the complexes in the aqueous phase, P_c are organic solvent/water partition constants of the complexes, ($P_c = [\text{ML}_c]_{\text{org}}/[\text{ML}_c]_{\text{aq}}$), $[\text{L}]$ is the free ligand concentration (mol/L) in the aqueous phase, and c is the number of ligand molecules in the first Cu(II) complex that is so hydrophobic that it freely passes into the organic phase (21–23).

On the basis of Eqs (2) and (3), we obtain the following relationship:

$$D_M = P_c \beta_c [\text{L}]^c + P_{c+1} \beta_{c+1} [\text{L}]^{c+1} + \dots + P_N \beta_N [\text{L}]^N \quad (4)$$

To learn which of the parameters, P_n or β_n , affects the partitioning of Cu(II) between the two phases, both stability constants of the complexes and their partition constants had to be determined. The required free azole

base concentrations in the aqueous phase at equilibrium, $[L]$, were found from the following equation:

$$[L] = \frac{K_a[HL^+]}{[H_3O^+]} \quad (5)$$

where K_a is the dissociation constant of the protonated ligand HL^+ , and $[HL^+]$ is the concentration of the conjugate acid of the ligand equal to analytical concentration of nitric acid (mol/L) in the aqueous phase.

The pK_a values of the homologous series of 1-alkyl-2-methylimidazoles needed for the calculations were taken from reference (18).

The pooled D_M values and the corresponding sets of independent variable $[L]$ were used for the determination of stability constants β_n of the Cu(II) complexes by using the equation proposed by Rydberg (21–23):

$$\frac{[L]^c}{D_M} = \frac{\sum_{n=0}^{n=N} \beta_n [L]^n}{P_c \beta_c} \quad (6)$$

Equation (6) can be used for the determination of composition of the first complex being extracted from the aqueous phase, and stability constant, β_1 , of the first complex formed in the aqueous phase. To do this, the shape of function $[L]^c/D_M = f[L]$ is monitored when varying exponent c between 1 and 6. In this way a bundle curve was obtained of which only one was a straight line with a positive slope and b values. It is assumed that the c value is equal to the number of ligand molecules attached to the central ion in the first complex being extracted.

This method was used previously (12–16, 20).

Stability constants, β_n , obtained in this way are collected in Table 1 for each organic solvent together with the previously determined stability constants of the Cu(II) complexes with water-soluble 1-alkyl-2-methylimidazoles (3, 5, 11) determined earlier by the potentiometric method.

The following points are worth emphasizing here:

- i. Stability constants derived from extraction experiments for higher 1-alkyl-2-methylimidazoles match those determined potentiometrically for water-soluble ligands of the homologous series – 1,2-dimethylimidazole (3), 1-ethyl-2-methylimidazole (4), 1-propyl-2-methylimidazole (6) and 1-butyl-2-methylimidazole (11). The stability constants determined by the partition method with the use of the different solvents have the similar values for the given ligand. So, their mean value can be calculated.
- ii. The data presented in Table 1 show that the stability constants of all the 1-alkyl-2-methylimidazole complexes with Cu(II) are invariant, regardless of the alkyl chain length and pK_a of the imidazole base. This phenomenon I was previously found for Cu(II) complexes with 1-alkylimidazoles (20). It is quite a surprising finding, because the stability constants of the previously studied complexes of Co(II) (12), Ni(II)

Table 1. Stability constants $\log \beta_c$ and partition constants P_c of the Cu(II) complexes with 1-alkyl-2-methylimidazoles in aqueous solution ($I = 0.5$ K(HNO₃) at 25°C.

Ligand	pK _a	$\log \beta_1$	$\log \beta_1$ medium	$\log \beta_2$	$\log \beta_2$ medium	$\log \beta_3$	solvent	P ₁	P ₂	P ₃
1,2-dimethylimidazole (3)	8.21	3.70		6.80		9.18				
1-ethyl-2-methylimidazole (4)	8.21	3.52		6.60		8.98				
1-propyl-2-methylimidazole (6)	8.25	3.67		7.23		9.65				
1-butyl-2-methylimidazole (11)	8.18	3.74		6.98		9.44				
1-isobutyl-2-methylimidazole	8.03	3.48		6.56		8.46	dichloromethane	1.4	12	80
		3.56		6.71			trichloromethane	0.24	6.5	
1-pentyl-2-methylimidazole	8.27	3.52		6.64		9.18	dichloromethane	15	271	458
		3.53	3.50	6.66	6.59		trichloromethane	1,23	29	
		3.44		6.48			2-ethyl-1-hexanol	2.5	15	
1-isopentyl-2-methylimidazole	8.27	3.40		6.41			dichloromethane	2.7	60	
		3.39	3.44	6.39	6.49		trichloromethane	0.38	11	
		3.53		6.66			2-ethyl-1-hexanol	1.8	9.5	

Formation of Cu(II) Complexes using Liquid-Liquid Partition

2669

1-hexyl-2-methylimidazole	8.32	3.60	6.79	8.98	dichloromethane	26	307	590
		3.51	3.52	6.62	6.63	trichloromethane	2.7	35
		3.44		6.48		2-ethyl-1-hexanol	4	26
1-octyl-2-methylimidazole	8.40	3.63	6.84	9.65	dichloromethane	29	346	725
		3.52	3.53	6.64	6.65	trichloromethane	2.9	42
		3.44		6.48		2-ethyl-1-hexanol	4.8	38
1-decyl-2-methylimidazole	8.49	3.65	6.88	9.44	dichloromethane	41	395	840
		3.54	3.54	6.68	6.68	trichloromethane	3.08	50
		3.44		6.48		2-ethyl-1-hexanol	6	52
1-dodecyl-2-methylimidazole	8.53	3.60	6.79	9.37	dichloromethane	48	432	980
		3.60	3.58	6.79	6.75	trichloromethane	3.2	58
		3.55		6.69		2-ethyl-1-hexanol	90.2	65
		3.57		6.72		toluene	1.6	34

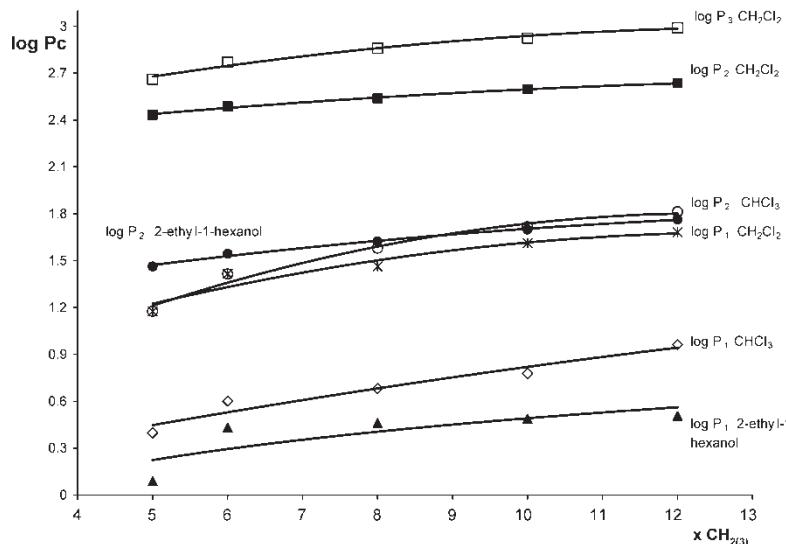
The given values of the constants β_n and P_n carry 10% tolerance.

(15) and Zn(II) (13, 14, 16) increased with increasing chain length of the 1-alkyl substituents. Moreover, the stability constants β_n of the Cu(II) complexes are considerably higher than those of Ni (II) (11). It proves that the participation of the $\pi_{M \rightarrow L}$ bonding in the interaction of ions Cu^{2+} with molecules of 1-alkyl-2-methylimidazoles is significant, though certainly smaller than in 1-alkylimidazoles (20).

Having in hand the whole pool of β_n values obtained potentiometrically for the Cu(II) complexes with 1-alkyl-2-methylimidazoles, it is easy to find β_2 and β_3 from the extraction data. A listing of the β_1 , β_2 , and β_3 values is shown in Table 1.

In order to determine the number, composition, and extractability of the complexes passing into the organic phase, respective partition constants, P_c , as defined by Eq. (3), were determined from the following relationship between distribution ratio, D_M , and mole fractions of successive complexes, α_n :

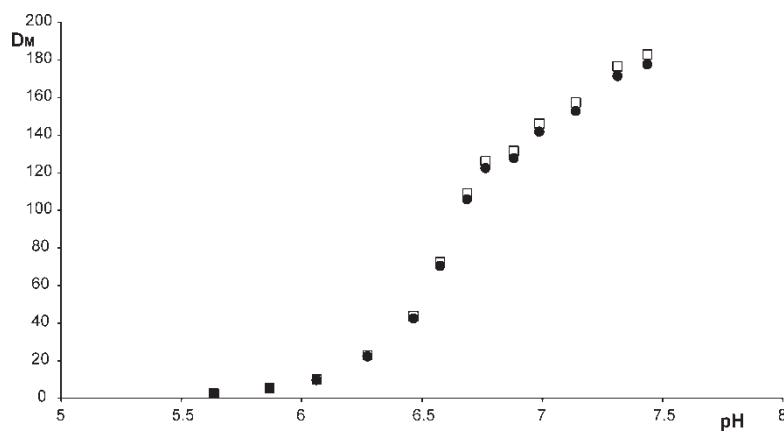
$$D_M = P_c \alpha_c + P_{c+1} \alpha_{c+1} + P_{c+2} + \dots + P_N \alpha_n \quad (7)$$

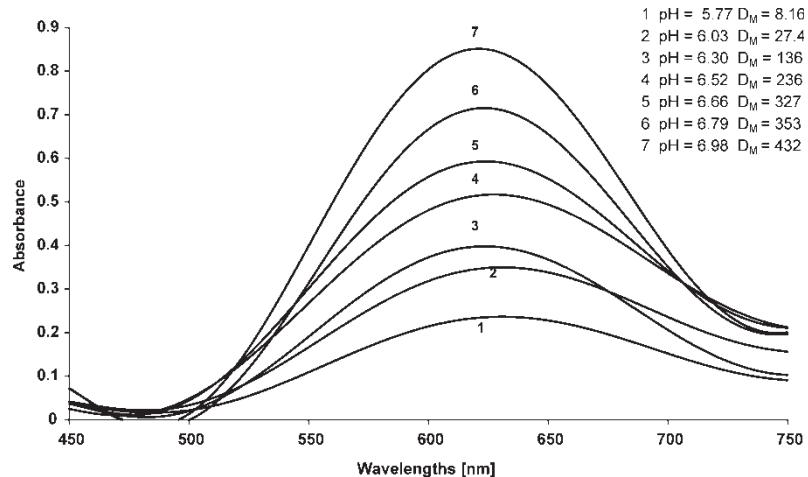

P_c and α_c characterize the first in the series of consecutive complexes containing c ligand molecules, which is capable of passing into the organic phase (21, 22). The calculations were accomplished numerically. I looked for the first straight line which passed through the origin of the coordinates. In this way, partition constants, P_c , of the first extractable complex was determined. Partition constants P_{c+1} , P_{c+2} ... and so on, were determined similarly from the relations $D_M = f(\alpha_{c+1})$, $D_M = f(\alpha_{c+2})$... and so on (23).

Partition constants, P_c , obtained in this way are collected in Table 1. Moreover, the constants were determined from Eq. (4) using the least-squares method.

With 2-ethyl-1-hexanol and trichloromethane, only two complexes, ML and ML_2 , have been extracted. Their partition constants, P_1 and P_2 (Table 1) are small. Again, with dichloromethane three successive complexes: ML , ML_2 , and ML_3 , could be extracted. Their partition constants, P_c , are larger than those with the two aforementioned solvents.

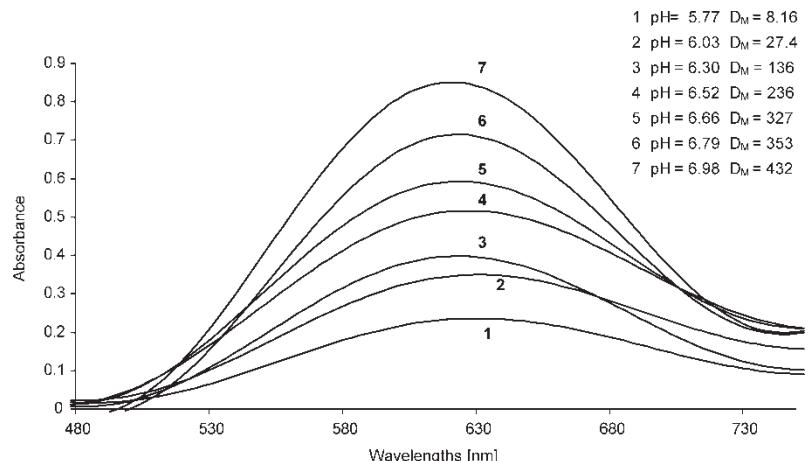
Partition constants, P_c , of all the extracted complexes increase in the following series: $P_1 < P_2 < P_3$. Moreover, they increase linearly with increasing 1-alkyl chain length (Fig. 4).

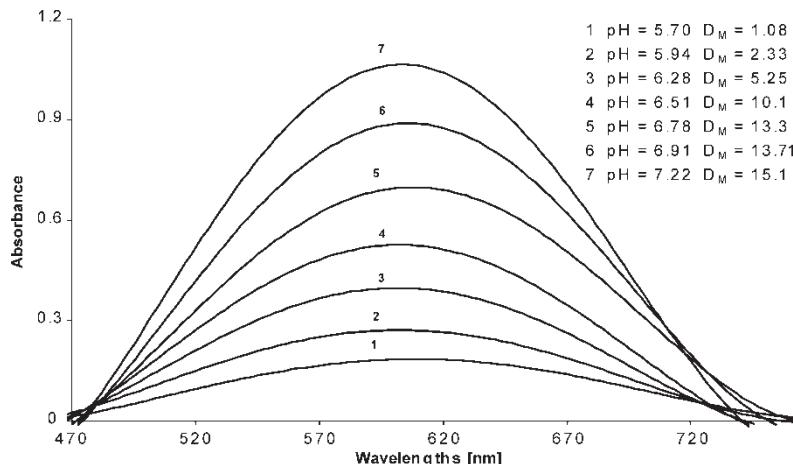

Mainly the second complex ML_2 and partly the third ML_3 decide on the extraction Cu(II) cation by 1-alkyl- 2-methylimidazoles. The extraction Co(II), Ni(II), and Zn(II) was determined by higher complexes, mainly ML_3 and ML_4 . It results that complexes Cu(II) with 1-alkyl- 2-methylimidazoles attain hydrophobicity proprieties more quickly than analogous compounds of cations of other metals. This can be due to the stronger bond in the coordination sphere of nitrate anions and of molecules of the solvent by Cu^{2+} . Perhaps, in this case, the deformations structural of the coordination sphere


Figure 4. Influence of the alkyl chain length in the position “1” on the partition constants ($\log P_1$, $\log P_2$, $\log P_3$) of the Cu(II) complexes with 1-alkyl-2-methylimidazoles.

of the copper(II) occur that make possible even the chelate bond of anions NO_3^- (24).

To verify the β_n and P_c constants, D_M values were calculated from experimental concentrations of free 1-hexyl-2-methylimidazoles, $[L]$ for toluene


Figure 5. Comparison of the obtained experimental and calculated values D_M vs. pH on the extraction of Cu(II) complexes with 1-hexyl-2methylimidazole for toluene as a solvent. ● – D_M experimental; □ – D_M calculated.


Figure 6. Absorbtion spectra of organic phase after extraction of the Cu(II) complexes with 1-octyl-2-methylimidazole in 2-ethyl-1-hexanol together with the corresponding pH of the aqueous phase and logarithms of distribution constant D_M .

systems. The pooled D_M values were then compared with the experimental pool for this ligand. The results are shown in Fig. 5.

The Cu(II) complexes of 1-alkyl-2-methylimidazoles are deep-blue in the organic phase. Their electronic spectra are shown in Figs. 6–8. Upon raising the ligand concentration, the absorption maxima become slightly displaced

Figure 7. Absorbtion spectra of organic phase after extraction of the Cu(II) complexes with 1-octyl-2-methylimidazole in dichloromethane together with the corresponding pH of the aqueous phase and logarithms of distribution constant D_M .

Figure 8. Absorption spectra of organic phase after extraction of the Cu(II) complexes with 1-octyl-2-methylimidazole in trichloromethane together with the corresponding pH of the aqueous phase and logarithms of distribution constant D_M .

towards shorter wavelengths. The maxima do not change upon increasing the 1-alkyl chain length. It can thus be hypothesized that the complexation of the Cu(II) ion does not significantly change the structure of the coordination polyhedron of the ion. The shapes of the spectra in Figs. 6–8 show that at least two complexes are being extracted. The location of the absorption maximum depends on the solvent used.

Du Preez maintained the formation of Cu(II) complexes with alkylimidazole which had the coordinative number smaller from 6. Du Preez utilized 1-decylimidazole, 1-decyl-2-methylimidazole, and 1-decyl-4(5)-methylimidazole to extract Cu(II) from the perchlorate, the chloride, and the thiocyanate solutions (25).

Summary

The steric effect due to the 2-methyl substituent decreases the stability of the Cu(II) complexes with 1-alkyl-2-methylimidazoles. Although these ligands are stronger bases than 1-alkylimidazoles, they form less stable complexes due to decreased contribution of the $\pi_{M \rightarrow L}$ back donation in the complexes of 1-alkyl-2-methylimidazoles. However, the contribution still remains significant because the stability constants, β_n , of the complexes do not depend on the alkyl chain length and increasing basicities of the ligands, as was the case with 1-alkylimidazoles.

From nitrate-containing solutions of the Cu(II) complexes with 1-alkyl-2-methylimidazoles, either two or three complexes are extracted with 2-ethyl-1-

hexanol, trichloromethane, and dichloromethane. An increasing bulkiness of the imidazole ligands does not significantly affect the structure of the coordination sphere of the Cu(II) complexes. It can thus be suggested that the extractable species have the following composition: $[\text{CuL}(\text{NO}_3)_2\text{S}]$, $[\text{CuL}_2(\text{NO}_3)_2\text{S}]$ and $[\text{CuL}_3(\text{NO}_3)_2\text{S}]$ where S denotes a solvent molecule.

Bearing in mind the possibility of chelation of Cu^{2+} with nitrate ions (24) it can be assumed that the extractable complexes are coordinatively saturated.

REFERENCES

1. Sundberg, R.J. and Martin, R.B. (1974) Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological system. *Chem. Rev.*, 4: 471.
2. Lenarcik, B., Kulig, J., and Laidler, P. (1974) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part II. 2-Methylimidazole complexes of Co(II), Cu(II) and Zn(II). *Roczniki Chemii*, 48: 1151.
3. Lenarcik, B. and Barszcz, B. (1980) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part XXI. A comparison of complex-forming of 1,2-dimethylimidazole with that of other 1,3-diazoles. *J. Chem. Soc. Dalton Trans.*, 24.
4. Lenarcik, B. and Kurdziel, K. (1981) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part XXIII. Effect of the position of methyl substituents on the complex-forming capacity of imidazoles. *Pol. J. Chem.*, 55: 737.
5. Lenarcik, B. and Kurdziel, K. (1982) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part XXV. The effect of the size and position of an alkyl substituent on the stability and structure of alkylimidazole complexes. *Pol. J. Chem.*, 56: 3.
6. Lenarcik, B., Kurdziel, K., and Czopek, R. (1991) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part XXVIII. The steric effect in the complex formation of 2-n-propylimidazole and 2-isopropylimidazole. *Pol. J. Chem.*, 65: 815.
7. Lenarcik, B., Kurdziel, K., and Czopek, R. (1991) Stability and structure of transition metal complexes with azoles in aqueous solutions. Part XXIX. The influence of the size and structure of the alkyl group on the formation of 2-alkylimidazole complexes. *Pol. J. Chem.*, 65: 1235.
8. Lenarcik, B., Czopek, R., and Kurdziel, K. (1991) Research of optimum conditions for extraction of metal complexes by alkylimidazole. Part IV. The influence of the steric effect on the extraction of the complexes of 2-ethylimidazole with Co(II), Ni(II), Zn(II) and Cd(II). *Pol. J. Chem.*, 65: 837.
9. Lenarcik, B., Głowacki, J., and Rzepka, M. (1979) Search for optimum conditions of extraction of transition metal complexes with alkylimidazoles. Part I. Extraction of the Co(II), Ni(II) and Zn(II) complexes of 1-methylimidazole and of the Co(II) and Zn(II) complexes of 2-methylimidazole. *Sep. Sci. Technol.*, 14: 37.
10. Lenarcik, B. and Głowacki, J. (1979) Search for optimum conditions of extraction of transition metal complexes with alkylimidazoles. Part II. Extraction of the Co(II), Ni(II) and Zn(II) complexes of 2-methylimidazole. *Sep. Sci. Technol.*, 14: 721.

11. Lenarcik, B., Adach, A., and Radzyminska-Lenarcik, E. (1999) The influence of steric effect and alkyl chain length on the extraction of the complexes of Co(II), Ni(II), Cu(II) Zn(II) and Cd(II) with 1-alkyl-2-methylimidazole. *Pol. J. Chem.*, 73: 1273.
12. Lenarcik, B. and Ojczenasz, P. (2004) Investigation of the stability of Co(II) complexes with homologous series of 1-alkylimidazoles in aqueous solutions and their partition between aqueous phase and organic solvent. *Sep. Sci. Technol.*, 39: 199.
13. Lenarcik, B. and Kierzkowska, A. (2004) The influence of alkyl chain length on stability constants of Zn(II) complexes with 1-alkylimidazoles in aqueous solutions and their partition between aqueous phase and organic solvent. *Solv. Ext. Ion Exch.*, 22: 449.
14. Lenarcik, B. and Kierzkowska, A. (2004) The influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4(5)-methylimidazoles. *Solv. Ext. Ion Exch.*, 39: 3485.
15. Lenarcik, B. and Rauckyte, T. (2004) The influence of alkyl length on extraction equilibria of Ni(II) complexes with 1-alkylimidazoles in aqueous solution/organic solvent systems. *Sep. Sci. Technol.*, 39: 3353.
16. Lenarcik, B. and Kierzkowska, A. (2006) The influence of alkyl chain length and steric effect on extraction of zinc(II) complexes with 1-alkyl-2-methylimidazoles. *Solv. Ext. Ion Exch.*, 24: 433.
17. Pernak, J., Krysinski, J., and Skrzypeczak, A. (1987) Bakterizide wirkung von iminiumverbindungen. *A. Tenside Surfact. Det.*, 24: 276.
18. Lenarcik, B. and Ojczenasz, P. (2002) The influence of the size and position of the alkyl groups in alkylimidazole molecules on their acid-base properties. *J. Heterocycl. Chem.*, 39: 287.
19. Braibanti, A., Ostacoli, G., Paoletti, P., Pettit, L.D., and Sammartano, S. (1987) Potentiometric apparatus and technique for the pH-metric measurement of metal-complex equilibrium constants. *Pure Appl. Chem.*, 59: 1721.
20. Radzyminska-Lenarcik, E. (2007) The influence of the alkyl chain length on extraction equilibrium of Cu(II) complexes with 1-alkylimidazoles in aqueous solution/organic solvent systems. *Solv. Ext. Ion Exch.*, 25: 53.
21. Rydberg, J. (1950) On the complex formation between thorium and acetylacetone. *Acta Chem. Scand.*, 4: 1503.
22. Rossotti, F.J.C. and Rossotti, H. (1961) *The Determination of Stability Constants*; McGraw-Hill: New York.
23. Rydberg, J., Musakis, C., and Chopin, G.R. (1992) *Principles and Practices of Solvent Extraction*; M.Dekker, Inc: New York; Vol. 1, 22.
24. Kurdziel, K. and Glowik, T. (1999) Crystal structure and physico-chemical characterization of the nitrato complexes of copper(II) with 1-ethoxymethylimidazole. *Trans. Met. Chem.*, 24: 366.
25. du Preez, J.G.H., Mattheüs, Ch., Sumter, N., Ravindran, S., Potgieter, C., and van Brecht, B.J. (1998) Nitrogen reagents in metal ion separation. Part VIII. Substituted imidazoles as extractants for Cu²⁺. *Solv. Ext. Ion Exch.*, 16 (2): 565.